
Eur. Phys. J. B 11, 65–73 (1999) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
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Abstract. Two–dimensional (2D) photonic band gaps (PBG) structure fabricated from anisotropic di-
electric is studied by solving Maxwell’s equations with use of plane–wave expansion method. Numerical
simulations show that absolute photonic band gaps can be substantially improved in two dimensional
square and triangular lattices of cylinders by introducing anisotropy in material dielectricity. Owing to
different refractive indices for electromagnetic waves with E- and H-polarization, the quasi–independent
adjustment of band gaps for the E- and H-polarization modes can be implemented by uniaxial crystals
with their extraordinary axis parallel to the cylinders. Large absolute band gaps can be created for uniaxial
cylinders in air with a positive anisotropy. In the case of air holes in background uniaxial dielectric with
even a weak negative anisotropy, the absolute band gap can be increased 2-3 times. Large absolute band
gap can also be obtained in other complex configurations of uniaxial and biaxial materials and this enables
a full exploitation of potential utilization for anisotropic materials available in nature. Such a mechanism
of band gap adjustment should open up a new scope for designing band gaps in 2D PBG structures.

PACS. 78.20.Ci Optical constants (refractive index, complex dielectric constant, absorption, reflection
and transmission coefficients, emissivity) – 78.20.Fm Birefringence – 42.50.-p Quantum optics – 81.10.Aj
Theory and models of crystal growth; physics of crystal growth, crystal morphology and orientation

1 Introduction

In the last decade there appears great interest in fab-
ricating the photonic band gaps (PBG) structure (also
called photonic crystals) [1–3] since the pioneering work
of Yablonovitch and John [4,5]. These structures are pe-
riodic modulation of dielectric and will exhibit a “forbid-
den” frequency region where electromagnetic (EM) waves
can not propagate for both polarizations along any di-
rections. This may bring about some peculiar physical
phenomena [4–9], as well as wide applications in sev-
eral scientific and technical areas [1–3]. Although three–
dimensional (3D) PBG structures will provide the most
stirring potential in applications, the fabrication of such
PBG structures with a band gap in the visible or infrared
regime is exceedingly difficult and still remains a challeng-
ing task [10–14].

In contrast, it is much easier to fabricate two dimen-
sional (2D) PBG structures in this regime [15–18]. Fur-
thermore, 2D structures could also find some important
uses such as a feedback mirror in laser diodes [19]. Perhaps
for this reason, much attention has been drawn towards
2D PBG structures [20–26].

a e-mail: wangxh@aphy.iphy.ac.cn

Since the superior features of PBG structures result
from the photonic band gap, it is essential to design crystal
structures with a band gap as large as possible. It is well
known that the electromagnetic wave can be decomposed
into the E- and H-polarization modes for a 2D structure.
An absolute band gap exists for a 2D PBG crystal only
when band gaps in both polarization modes are present
and they overlap with each other. Thus it is our aim to
search for some structures with an optimal overlapping
band gap by varying parameters of the PBG structure,
such as lattice type, refractive index contrast, filling frac-
tion, and atom configurations.

It has recently been reported that the symmetry re-
duction of atom configuration by introducing two-point
basis set in simple 2D lattices can remarkably increase
absolute band gaps [27], quite similar to the 3D case
with a nonspherical atom such as the diamond structure
[11,28–31]. Recently, it was found that the anisotropy in
atom dielectricity can also break the degeneracy of pho-
tonic bands such that partial band gaps can be created in
face–centered cubic, body–centered cubic, and simple cu-
bic lattices [32]. More recently, it was demonstrated that
such an anisotropy in dielectricity can also remarkably in-
crease absolute band gaps in 2D PBG structures [33].

The photonic band structure is left determined by the
refractive index contrast, provided that other parameters
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as lattice type, filling fraction, and atom configuration
are fixed. The sizes and positions of band gaps can be
adjusted by varying the refractive index contrast. Thus,
if we choose different refractive index contrasts for the E
and H-polarization modes in a given PBG structure, we
can match the relative position of band gaps for the two
modes. This will enable the optimal overlapping of band
gaps and the largest absolute band gap can be obtained.
One way available is to fabricate PBG structures from ma-
terials with anisotropy in dielectricity. Nature offers a lot
of anisotropic materials which are lossless and transpar-
ent in visible or infrared regime, among whom are uniaxial
crystals and biaxial crystals.

In this paper, we will study the photonic band struc-
tures of 2D PBG structures fabricated from uniaxial and
biaxial materials in their various configurations, and de-
sign the anisotropic PBG structure with an optimal abso-
lute band gap. We first briefly introduce in Section 2 the
plane–wave expansion method used in the calculations of
photonic band structures for the E- and H-polarization
modes of 2D anisotropic PBG structures. In Section 3, we
investigate the general principle for improving the abso-
lute band gap of PBG structures by anisotropic materials.
Then in Section 4 we demonstrate the quasi–independent
adjustment of band gaps for the E and H-polarization
modes by uniaxial crystals with their extraordinary axis
parallel to the cylinders. In Section 5 we will study the ab-
solute band gap in other more complex configurations of
anisotropic materials, in order to make a full exploitation
of potential utilization for the available anisotropic mate-
rials in nature. Some brief summaries and conclusions are
given in Section 6.

2 Model and formalism for anisotropic 2D
photonic crystals

It is well–known in general optics that the uniaxial
material has two different principal-refractive indices as
ordinary-refractive index no and extraordinary-refractive
index ne, while the biaxial crystal has three different prin-
cipal refractive indices, namely, nx 6= ny 6= nz. For such
anisotropic materials, the dielectric constant ε is a dyadic
(second rank tensor). In the principal coordinates where
the Z-axis is parallel to the cylinders of 2D PBG struc-
tures, and the Bloch waves propagate in the XOY plane,
the diagonal elements of ε are related to the principal-
refractive indices as

εxx = n2
x, εyy = n2

y, εzz = n2
z ,

while other dyadic elements are all zero.
To derive the eigen equations for 2D anisotropic PBG

structures, we start from the case of 3D anisotropic PBG
structures. In a periodic anisotropic structure where the
dielectric constant ε(r) is a dyadic and position dependent,
Maxwell’s equations can reduce to the following equation
satisfied by the magnetic field H as [32]

∇×
[
ε−1(r) · (∇×H)

]
=
ω2

c2
H, (1)

where ε−1(r) is the inverse dyadic of ε(r). Since ε(r) is
periodic, we can use Bloch’s theorem to expand both
the H field and ε(r) in terms of plane waves, then from
equation (1) we can obtain the following linear matrix
equations for the dispersion of EM waves as∑

G′,λ′

Hλ,λ′

G,G′hG′,λ′ =
ω2

c2
hG,λ, (2)

where

Hλ,λ′

G,G′ =| k + G | | k + G′ |

×
(

ê2 · ε−1
G,G′ · ê2′ −ê2 · ε−1

G,G′ · ê1′

−ê1 · ε−1
G,G′ · ê2′ ê1 · ε−1

G,G′ · ê1′

)
. (3)

Here the Fourier transform coefficient ε−1
G,G′ =

ε−1(G−G′) is also a dyadic, and ê1, ê2 are orthogonal
unit vectors which are both perpendicular to wave vector
k+G because of the transverse character of magnetic field
H (i.e. ∇ ·H = 0).

In the case of 2D PBG structures, the Bloch wave prop-
agates in the XOY plane and thus we can choose ê1 = ẑ,
ê2 = e21x̂+ e22ŷ, then ê1 · ê2′ = ê2 · ê1′ = 0.

For the E-polarization mode, Hz = 0, then we have
hG,1 = 0. After simple algebraic derivation, equation (2)
reduces to the following linear matrix equations,∑

G′

| k + G || k + G′ | ε−1
zz (G−G′)hG′,2 =

ω2

c2
hG,2. (4)

For the H-polarization mode, Hx = Hy = 0, and
hG,2 = 0. Then equation (2) reduces to the following lin-
ear equations as∑
G′

| k + G || k + G′ | [ε−1
xx (G−G′) e21e2′1

+ ε−1
yy (G−G′) e22e2′2]hG′,1 =

ω2

c2
hG,1. (5)

It is evident that for isotropic PBG structures with
ε−1
xx (G−G′) = ε−1

yy (G−G′) = ε−1
zz (G−G′) =

ε−1(G−G′), equations (4, 5) will reduce to the familiar
forms in references [21,24,25].

In the simplest configuration of anisotropic materials,
the 2D PBG structure is fabricated from uniaxial crys-
tals and the extraordinary axis is parallel to the exten-
sion direction of cylinders. Then, we have ε−1

xx (G−G′) =
ε−1
yy (G−G′). As (k + G) ⊥ ê2 and (k + G′) ⊥ ê2′ , equa-

tion (5) can be simplified into a more concise form as

∑
G′

(k + G) · (k + G′)ε−1
xx (G−G′)hG′,1 =

ω2

c2
hG,1. (6)

In this configuration, the eigen equations for the E-
and H-polarization modes are the same as those for the
isotropic PBG structures, respectively, except that the di-
electric constants for the two modes are now different.
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They are n2
e for the E-polarization mode and n2

o for the
H-polarization mode. The anisotropic photonic band
structures embodied in equations (4, 6) are solved us-
ing standard matrix diagonization techniques, which is
also the same as in the case of isotropic PBG struc-
tures [21,24,25,28,29]. In our calculations, the results
were obtained using 289 plane waves. The convergence
accuracy for the several lowest photonic bands is better
than 1%.

For more complex configurations that 2D PBG struc-
tures are fabricated either from uniaxial crystals with one
of the ordinary axes parallel to the cylinders, or from bi-
axial crystals, the photonic band structures embodied in
equation (4) for the E-polarization mode are also solved in
the same way as in the case of isotropic PBG structures.
In contrast, ε−1

xx (G−G′) and ε−1
yy (G−G′) in equation (5)

for the H-polarization mode are now different. Because
of such an anisotropy of dielectric constant, equation (5)
does not conserve in some symmetry transform opera-
tions of the lattice. The reduction of crystal symmetry
results in the inequivalence of the photonic band struc-
tures along previously equivalent directions in the Bril-
louin zone. To demonstrate the existence of a band gap
for the H-polarization mode, one has to calculate the pho-
tonic band structure along high symmetry lines in various
regions of the Brillouin zone. Another equivalent way is
to investigate the photonic band structure along the sym-
metry lines in a fixed region of the Brillouin zone, while
permuting the dielectric dyadic elements εxx and εyy [32].
In this paper we would like to adopt the latter method to
treat the anisotropic photonic band structures for the H-
polarization mode. We also adopt 289 plane wave in our
calculations, and the convergence accuracy for the several
lowest photonic bands is better than 1%, too.

3 General principle for creating large absolute
band gaps in anisotropic photonic crystals

In order to design anisotropic 2D PBG structures with
large absolute band gaps, we first discuss the general prin-
ciple for creating absolute band gaps by the anisotropy of
material dielectricity.

We start from 2D PBG structures fabricated from
isotropic material. We first examine 2D PBG structures
consisting of dielectric cylinders in air. The cylinders
are arranged in triangular lattice. The photonic proper-
ties of isotropic structures have been studied and shown
to exhibit band gaps for each of the two polarization
modes [21]. However, there is some discrepancy about
whether an absolute band gap is present. Our simulations
demonstrate that band gaps in the two polarization modes
do not overlap with each other, resulting in the absence
of the absolute band gap. This can be clearly seen from
Figure 1, which displays the band structures of two polar-
ization modes for a triangular lattice of isotropic dielec-
tric cylinders in air. The cylinders have a refractive index
of n = 3.6 and a filling fraction of f = 0.4. Two band
gaps open for the E-polarization mode (plotted in solid
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Fig. 1. Calculated photonic band structure for a triangular
lattice of isotropic dielectric cylinders in air for E-polarization
(solid lines) and H-polarization (dotted lines) modes. The
cylinders have a refractive index of n = 3.6 and a filling fraction
of f = 0.4.

lines), i.e. the 1-2 band gap and 3-4 band gap. For the
H-polarization mode (plotted in dotted lines) a band gap
is opened between 1-2 bands. However, the H 1-2 band
gap lies between the E 1-2 and 3-4 band gaps, thus no
absolute band gap is present. Simulations at other filling
fractions also show that no absolute band gap is opened
as the higher edge of the H 1-2 band gap always coin-
cides with the lower edge of the E 3-4 band gap at high
refractive index. This can be attributed to the degener-
acy between the H 2 band and E 3, 4 bands, as shown in
Figure 1.

The case can be changed by introducing the anisotropy
in the dielectric of cylinders. For simplicity and not with-
out generality, we prefer to choose uniaxial materials with
their extraordinary axis parallel to the extension direc-
tion of cylinders. According to Figure 1, if we can move
upwards the H 1-2 band gap so that it can overlap with
the E 3-4 band gap, or if we can shift it downwards as to
overlap with the E 1-2 band gap, an absolute band gap
will be opened. As the photonic band frequency is some-
what inverse with respect to refractive index contrast, this
means that we must choose in the former case a refractive
index for the H-polarization mode lower than that for the
E-polarization mode, namely, ne > no, a positive uniax-
ial crystal. In the latter case, we should select a negative
uniaxial material with ne < no.

Following this idea, we investigate the dependence of
band gap positions on the refractive index for both po-
larization modes, in order to design PBG structures with
optimal band gaps. As an example, we first consider the
triangular lattice of dielectric cylinders in air. The fill-
ing fraction of cylinders is fixed as f = 0.4. The results
are displayed in Figure 2. A band gap is present for the
H-polarization mode at a refractive index larger than 3.0.
Two wide band gaps still open for the E-polarization mode
at a refractive index as low as n = 2.0. However, the band
gaps of the two modes do not overlap at all refractive in-
dices. The top edge of the H 1-2 band gap is always lower
than the bottom edge of the E 3-4 band gap, while the
bottom edge of the H 1-2 band gap is always higher than
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Fig. 2. Dependence of band gap positions on the refractive
index for the triangular lattice of dielectric cylinders in air
with a filling fraction of f = 0.4.

the top edge of the E 1-2 band gap. Therefore, no absolute
band gap is present at all refractive indices.

As conceptualized above, the optimal overlap of E and
H band gaps can be obtained by introducing anisotropy
in material dielectricity. This is verified when one looks
into Figure 2. The H 1-2 band gap can overlap either
with the E 1-2 band gap at a lower refractive index or
with the E 3-4 band gap at a higher refractive index.
Given an anisotropy sufficient enough, the band gaps will
match completely and the largest absolute band gap can
be achieved. In particular, consider the large H 1-2 band
gap at no = 4.0, which lies between 0.278−0.333 (2πc/a),
c is the light speed in vacuum and a is the lattice constant
of a triangular lattice. Its top edge overlaps with that of
the E 3-4 band gap at ne = 5.2, and its bottom edge
overlaps with that of the E 3-4 band gap at ne = 4.8.
Therefore, the two band gaps overlap wholly each other
at the range of 4.8 ≤ ne ≤ 5.2. Similarly, it can be found
that this H 1-2 band gap also completely overlaps with
the E 1-2 band gap at the range of 2.6 ≤ ne ≤ 2.8. The
anisotropy to obtain the optimal absolute band gap by a
positive crystal is weaker than that by a negative crystal,
thus it is easier in experiment to fabricate from positive
uniaxial material 2D PBG structures with optimal band
gaps.

Such a concept is also applicable to other lattice types
and atom configurations. Figure 3 displays the dependence
of band gap positions on the refractive index contrast for
both polarization modes in a square lattice of dielectric
cylinders in air. The filling fraction of cylinders is fixed
as f = 0.4. Although the band gap variations are similar
to those in triangular lattice, comparing Figure 3 with
Figure 2, the band gaps are narrower than in triangular
lattice. The H 1-2 band gap does not open until at a large
refractive index over 3.6, and reaches its maximum size at
n = 4.8.

According to Figure 3, no absolute band gap is present
in such isotropic PBG structures at any refractive index.
However, an absolute band gap can also be opened by
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Fig. 3. Dependence of band gap positions on the refractive
index for the square lattice of dielectric cylinders in air with a
filling fraction of f = 0.4.

the introduction of sufficient anisotropy into material di-
electricity, shifting the H 1-2 band gap either upwards or
downwards to overlap with the E 3-4 band gap or the E
1-2 band gap, respectively. Similar to a triangular lattice,
an optimal absolute band gap can be obtained by match-
ing the relative position of the H 1-2 band gap either with
the E 3-4 band gap or with the E 1-2 band gap, corre-
sponding to the selection of positive crystals or negative
crystals. Because of narrower E 1-2 and 3-4 band gaps,
the matching condition is more strict than for triangular
lattice. For example, the large H 1-2 band gap at no = 4.8
can completely overlap the E 3-4 band gap at the narrow
range of 5.9 ≤ ne ≤ 6.0, and overlap the E 1-2 band gap
only at about ne = 3.1. It is also favorable to obtain from
positive crystals the optimal absolute band gaps in such
square lattice structures.

In principle the optimal absolute band gaps can
be obtained for any 2D photonic crystals, as the
quasi–independent adjustment of band structures by the
anisotropy in dielectricity is so effective. However in prac-
tice, due to limited anisotropic materials [34], such an opti-
mal match in band gaps can not fully be achieved because
it needs very strong anisotropy in material dielectricity.
Nevertheless, the anisotropy is still of much help to create
and increase absolute band gaps in 2D PBG structures.

As to PBG structures with air cylinders in background
dielectric, which exhibit absolute band gaps in both square
and triangular lattices [3], the anisotropy in dielectricity
can also improve the size of absolute band gap. The princi-
ple is essentially the same as in crystals of dielectric cylin-
ders in air.

Figure 4 displays the dependence of band gap posi-
tions on the refractive index contrast for both polariza-
tion modes in a square lattice of air cylinders embedded
in dielectric medium. The filling fraction of air holes is
f = 0.7. It is evident that the H 2-3 band gap overlaps
partially with the E 3-4 band gap at a refractive index
of background medium larger than 2.8. Photonic crystals
composed of negative material with a weak anisotropy will
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Fig. 4. Dependence of band gap positions on the refractive
index for a square lattice of air cylinders in dielectric medium.
The cylinders have a filling fraction of f = 0.7.

move upwards the E 3-4 band gap relative to the H 2-
3 band gap. This will improve remarkably the two band
gaps overlapping and the absolute band gap can be in-
creased 2-3 times. As an example, the absolute band gap
for isotropic PBG structure at n = 4.0 has a width of
∆ω = 0.012(2πc/a). Yet the anisotropic PBG structure
with ne = 4.0 and no ≥ 4.2 exhibits an absolute band gap
with ∆ω = 0.031(2πc/a), about three times the size of
that in isotropic crystals. The E 3-4 and H 2-3 band gaps
can be matched optimally by weak negative anisotropy in
a wide range of refractive index. Yet it is difficult in prac-
tice to match the E 1-2 band gap with the H 2-3 band
gap, as this will require very strong anisotropy in nega-
tive materials. Simulations made for the triangular lattice
of air cylinders in background dielectric demonstrate that
large absolute band gaps also open for anisotropic 2D PBG
structures.

In the above we have shown that the anisotropy
in material dielectricity for both square and triangu-
lar lattices can increase the size of absolute photonic
band gap remarkably. As the refractive index for the E-
polarization and H-polarization modes can be chosen dif-
ferent, the band gaps can be adjusted quasi–independently
and matched to overlap optimally. In particular, the pos-
itive uniaxial materials are more favorable in improving
the absolute band gap of PBG structures consisting of
dielectric cylinders in air, while for crystals composed of
air holes in dielectric medium, negative uniaxial materi-
als are more competent. These general principles should
be followed in the practical design of anisotropic 2D PBG
structures with large absolute band gaps. Furthermore,
they should be applicable to uniaxial and biaxial materi-
als in various configurations of dielectricity.

4 Large absolute band gaps in uniaxial
photonic crystals

According to the analyses in Section 3, materials with
large refractive index and sufficient anisotropy are

required in the creation of absolute band gaps in 2D
anisotropic PBG structures. This may impose a severe re-
strictions on the anisotropic materials available in nature
that can be effective candidates for PBG structures. As a
practical example, we consider 2D PBG structures made
from Te (tellurium), which is a kind of positive uniaxial
crystal with unusually large principal indices of ne = 6.2
and no = 4.8 in the wavelength regime between 3.5 µm
and 35 µm. Although Te is a semiconductor material, the
free carrier absorption is quite weak in the infrared regime
with an absorption coefficient of α ' 1 cm−1. Thus, the
imaginary parts of the complex refractive indices can be
neglected compared with their real parts, and the pho-
tonic band structures will not be changed. Furthermore,
the absorption will not become a serious problem as a
PBG structure consisting of several tens of unit cell layers
is thick enough for practical applications.

As noted in Section 3, the quasi–independent match
of band gaps through anisotropy in the refractive index
for the E- and H-polarization modes can be implemented
most effectively and conveniently when the extraordinary
axis of Te is chosen parallel to the extension direction of
cylinders. Furthermore, as a positive crystal, Te is more
favorable in improving the absolute band gap of PBG
structures consisting of dielectric cylinders in air. This is
verified by numerical simulations on photonic band struc-
tures. The photonic band structures for triangular and
square lattices of Te cylinders in air are displayed in Fig-
ures 5a and 5b, respectively. In both lattices the filling
fractions of cylinders are f = 0.4 and the extraordinary
axis of Te is chosen parallel to the cylinders. It is evi-
dent that an absolute band gap is present in both lattice
structures, which results from the overlap of the H 1-2
band gap with the E 3-4 band gap, consistent with the
analysis of anisotropy match for band gaps shown in Fig-
ures 2 and 3. The absolute band gap (crosshatched region
in Figs. 5a and 5b) for the triangular lattice has a width
of ∆ω = 0.046(2πc/a), and a band gap to midgap ra-
tio of ∆ω/ωg = 17.9%. For the square lattice we have
∆ω = 0.035(2πc/a) and ∆ω/ωg = 14.8%.

We next investigate the dependence of band gap po-
sitions on the filling fraction of Te cylinders for the E-
and H-polarization modes. The results are displayed in
Figures 6a and 6b for triangular and square lattices of Te
cylinders in air, respectively. In both lattice structures,
an absolute band gap resulting from the overlap of the
H 1-2 band gap with the E 3-4 band gap persists in a
wide range of filling fraction of Te cylinders. At a fill-
ing fraction of about f ≤ 0.36, the H 1-2 band gap lies
in the wide E 3-4 band gap, and at a larger filling frac-
tion, the two band gaps intersect. Because of this vari-
ation character, the maximum absolute band gap lies at
f = 0.41 for the triangular lattice with a band gap width
of ∆ω = 0.046(2πc/a) and a band gap to midgap ratio
of ∆ω/ωg = 18.0%, and for the square lattice it lies at
f = 0.38 with ∆ω = 0.037(2πc/a) and ∆ω/ωg = 15.2%.

As to the 2D PBG structures composed of air holes
in dielectric medium, negative uniaxial materials are
more competent in improving the absolute band gap,
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Fig. 5. Calculated photonic band structures of (a) a triangu-
lar lattice; and (b) a square lattice of Te cylinders in air for
E-polarization (solid lines) and H-polarization (dotted lines)
modes. The filling fractions of Te cylinders in both lattices
are f = 0.4 and the extraordinary axis of Te is parallel to
the cylinders. An absolute band gap (crosshatched region) is
present between 0.234 − 0.280(2πc/a) in the triangular lattice
and lies between 0.219 − 0.254(2πc/a) in the square lattice.

according to the analyses made in Section 3. The mate-
rial we consider is Tl3AsSe3, which is a negative uniaxial
crystal with no = 3.35 and ne = 3.16 in the visible regime.
The anisotropy in dielectricity is not remarkable, however,
according to Figure 3, it is sufficient to improve the size
of absolute band gap in a square lattice of air holes by
2-3 times. We calculate the photonic band structures for
square and triangular lattices of air cylinders in Tl3AsSe3

background medium, and the results are displayed in Fig-
ures 7a and 7b, respectively. The filling fractions of air
cylinders are both f = 0.7 and the extraordinary axis
of Tl3AsSe3 is also parallel to the cylinders axis. In the
square lattice, the absolute band gap results from the over-
lap of the E 3-4 and H 2-3 band gaps, while in the trian-
gular lattice it results from the overlap of the E 2-3 and H
1-2 band gaps. In both lattices, the E band gap is far nar-
rower than the H band gap and they overlap each other
completely. The absolute band gap for the square lattice
has a width of ∆ω = 0.027(2πc/a), and a band gap to
midgap ratio of ∆ω/ωg = 5.6%. For the triangular lattice
we have ∆ω = 0.026(2πc/a) and ∆ω/ωg = 6.0%.

The dependence of band gap positions on the filling
fraction of air cylinders for the E- and H-polarization
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Fig. 6. Dependence of band gap positions on the filling fraction
of Te cylinders for (a) a triangular lattice; and (b) a square
lattice of Te cylinders in air. The extraordinary axis of Te is
parallel to the cylinders.

modes is displayed in Figures 8a and 8b for square and tri-
angular lattices of air cylinders in Tl3AsSe3 background,
respectively. In both lattice structures, an absolute band
gap is present at a filling fraction of f ≥ 0.60. The optimal
absolute band gap lies at f = 0.72 for the square lattice
with a band gap width of ∆ω = 0.038(2πc/a) and a band
gap to midgap ratio of ∆ω/ωg = 7.8%. For the triangular
lattice the largest absolute band gap lies at f = 0.79 with
∆ω = 0.055(2πc/a) and ∆ω/ωg = 11.3%.

5 Improvement of absolute band gaps
in other complex configurations
of anisotropic materials

As noted in Section 3, the quasi–independent adjust-
ment of E and H band gaps can be implemented in 2D
uniaxial PBG structures with the extraordinary axis par-
allel to the cylinders. Although this simplest configuration
of anisotropic material is most effective and convenient in
improving the absolute band gap, due to the limit of avail-
able anisotropic materials and thus for exploiting their
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Fig. 7. Calculated photonic band structures of (a) a square
lattice; and (b) a triangular lattice of air cylinders in Tl3AsSe3

background for E-polarization (solid lines) and H-polarization
(dotted lines) modes. The filling fractions of air cylinders
in both lattices are f = 0.7 and the extraordinary axis of
Tl3AsSe3 is parallel to the cylinders. An absolute band gap
(crosshatched region) is present between 0.466− 0.493(2πc/a)
in the square lattice and between 0.422 − 0.448(2πc/a) in the
triangular lattice.

utilization potential as fully as possible, it is reasonable
to investigate absolute band gaps in other more complex
configurations of anisotropic materials.

Consider, for example, the positive uniaxial crystal
Te, which has been shown to be an ideal candidate for
2D PBG structures composed of the lattice of dielectric
cylinders in air, due to its large principal refractive index
and strong anisotropy. In these structures, the extraor-
dinary axis of Te should be parallel to the cylinders. In
contrast, if we choose one of the ordinary axes parallel
to the cylinders, then according to equations (4, 5), the
refractive index for the E-polarization mode is no = 4.8
while for the H-polarization mode the refractive index is
still anisotropic with two principal indices as no = 4.8 and
ne = 6.2. In a very simplified way, electromagnetic waves
at the H-polarization mode will experience an average
refractive index (about (ne +no)/2 = 5.5) larger than that
for the E-polarization mode, then according to the anal-
yses in Section 3, this configuration would be favorable in
improving absolute band gaps for 2D PBG structures con-
sisting of lattices of air cylinders in dielectric background.
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Fig. 8. Dependence of band gap positions on the filling frac-
tion of air cylinders for (a) a square lattice; and (b) a triangular
lattice of air cylinders in Tl3AsSe3 background. The extraor-
dinary axis of Tl3AsSe3 is parallel to the cylinders.

As noted in Section 2, to demonstrate the existence of
a band gap for the H-polarization mode, one can inves-
tigate the photonic band structure along the symmetry
lines in a fixed region of the Brillouin zone, while per-
muting the dielectric dyadic elements εxx and εyy in equa-
tion (5) [32]. In the following we will apply this method
to investigate the anisotropic photonic band structures for
the H-polarization mode.

In the square lattice of air cylinders in Te background,
we choose an irreducible Brillouin zone where the high
symmetry points are coordinated as: Γ = (0, 0), X =
(π/a)(1, 0), and M = (π/a)(1, 1). This means that the
selected Brillouin zone is prominently along the X-axis.
Corresponding to two inequivalent 1/2 Brillouin zones, we
have the dielectric dyadic elements in equation (5) as (a)
εxx = n2

o, εyy = n2
e ; and (b) εxx = n2

e , εyy = n2
o. The pho-

tonic band structures in these two inequivalent 1/2 Bril-
louin zones are displayed in Figures 9a and 9b, respectively
for theH-polarization mode. Also plotted are the photonic
band structures for the E-polarization mode, which are
uniform in the two Brillouin zones. The air cylinders have
a filling fraction of f = 0.7 and one of the ordinary axes
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Fig. 9. Calculated photonic band structures of a square lat-
tice of air cylinders in Te background in air for E-polarization
(solid lines) and H-polarization (dotted lines) modes in two
inequivalent 1/2 partial Brillouin zones of a square lattice as
(a) εxx = n2

o, εyy = n2
e ; and (b) εxx = n2

e , εyy = n2
o. The high

symmetry points of the irreducible Brillouin zone are chosen
as Γ = (0, 0), X = (π/a)(1, 0), and M = (π/a)(1, 1). The fill-
ing fraction of air cylinders is f = 0.7 and one of the ordinary
axes of Te is parallel to the cylinders. An absolute band gap
(crosshatched region) is present between 0.307−0.336(2πc/a).

of Te is parallel to the cylinders. It is evident from Fig-
ures 9a and 9b that in both inequivalent Brillouin zones
an absolute band gap is present as the E 3-4 band gap
is wholly covered by the wider H 2-3 band gap. Thus an
absolute band gap is created in the whole Brillouin zone,
which is in fact the E 3-4 band gap. This absolute band
gap has a width of ∆ω = 0.029(2πc/a) and a band gap to
midgap ratio of ∆ω/ωg = 9.0%. It should be noted that
no band gap is present between the 5th and 6th photonic
bands for the E-polarization mode (the 6th photonic band
does not include in Figs. 9a and 9b).

Following the similar way, we also select for the tri-
angular lattice of air cylinders in Te background an irre-
ducible Brillouin zone along the X-axis direction, whose
high symmetry points have the coordinates as: Γ = (0, 0),
X = (π/a)(1,

√
3/3), and J = (π/a)(4/3, 0). The photonic

band structures in the two inequivalent 1/2 Brillouin zones
as (a) εxx = n2

o, εyy = n2
e and (b) εxx = n2

e , εyy = n2
o are

displayed in Figures 10a and 10b, respectively for the H-
polarization mode. As a clarity of view, we plot the pho-
tonic band structures uniform in the two Brillouin zones in
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Fig. 10. Calculated photonic band structures of a triangu-
lar lattice of air cylinders in Te background in air for E-
polarization (solid lines) and H-polarization (dotted lines)
modes in two inequivalent 1/2 partial Brillouin zones of a tri-
angular lattice as (a) εxx = n2

o, εyy = n2
e ; and (b) εxx = n2

e ,
εyy = n2

o. The high symmetry points of the irreducible Bril-
louin zone are chosen as Γ = (0, 0), X = (π/a)(1,

√
3/3), and

J = (π/a)(4/3, 0). The filling fraction of air cylinders is f = 0.8
and one of the ordinary axes of Te is parallel to the cylinders.
An absolute band gap (crosshatched region) is present between
0.310 − 0.383(2πc/a).

Figures 10a and 10b, too. The filling fraction of air cylin-
ders is set to be f = 0.8. The E 2-3 band gap overlaps
completely with a very large H 1-2 band gap, resulting in
the presence of an absolute band gap in the whole Bril-
louin zone. This absolute band gap is essentially the E 2-3
band gap and has a width of ∆ω = 0.073(2πc/a) and a
band gap to midgap ratio of ∆ω/ωg = 21.1%.

In the configuration that one of the ordinary axes of Te
is parallel to cylinders, Te can be regarded phenomenally
equivalent to a negative material for EM waves. There-
fore, the above numerical results are consistent with the
general principle for improving the absolute band gap by
anisotropic dielectricity in PBG structures, as conceptu-
alized in Figure 4 for lattices of air cylinders in dielec-
tric background. Furthermore, the refractive index and
anisotropy in this configuration of Te are both far larger
than those of the negative crystal Tl3AsSe3, thus it is
more favorable for Te to obtain a large absolute band gap
than for Tl3AsSe3. This enables the full exploitation of
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potential utilization of available anisotropic materials in
improving the absolute band gap of 2D PBG structures.

The design of absolute band gap in 2D PBG struc-
tures fabricated from biaxial crystals can follow quite the
similar way. Investigations of absolute photonic band gap
in various configurations of biaxial materials can further
make full use of anisotropic materials available in nature.

6 Summary and conclusions

In this paper, we have applied the plane–wave expan-
sion method to study the photonic band structures of
2D PBG structures fabricated from anisotropic materials
in their various configurations. The numerical simulations
show that the anisotropy in material dielectricity for both
square and triangular lattices can increase the size of ab-
solute photonic band gap remarkably. As the refractive
index for the E-polarization and H-polarization modes
can be chosen different, the band gaps can be adjusted
and matched to overlap optimally. In particular, the pos-
itive uniaxial materials are more favorable in improving
the absolute band gap of PBG structures consisting of
dielectric cylinders in air, while for crystals composed of
air holes in dielectric medium, negative uniaxial materials
are more competent. The quasi–independent adjustment
of band gaps for the E- and H-polarization modes can
be implemented by uniaxial crystals with their extraor-
dinary axis parallel to the cylinders. In order to make a
full exploitation of potential utilization for anisotropic ma-
terials available in nature we have investigated photonic
band structures in other more complex configurations of
anisotropic materials, and shown that large absolute band
gap can also be obtained in these complex configurations.
Due to large varieties of anisotropic materials in nature,
this opens up a new scope for designing the band gap of
2D photonic crystals.

This work was supported by National Natural Science Foun-
dation of China.
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